تم تحميل هذا الملف من موقع المناهج العُمانية

www.alManahj.com/om

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/om

* للحصول على أوراق عمل لجميع مواد الصف السابع اضغط هنا

https://almanahj.com/om/7

* للحصول على جميع أوراق الصف السابع في مادة رياضيات ولجميع الفصول, اضغط هنا

https://almanahj.com/om/7math

* للحصول على أوراق عمل لجميع مواد الصف السابع في مادة رياضيات الخاصة بـ الفصل الأول اضغط هنا https://almanahj.com/om/7math1

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف السابع اضغط هنا

https://almanahj.com/om/grade7

* لتحميل جميع ملفات المدرس فاطمة باعمر اضغط هنا

للتحدث إلى بوت على تلغرام: اضغط هنا

https://t.me/omcourse_bot

المديرية العامة للتربية والتعليم

محافظة ظفار

مدرسة الراية للتعليم الاساسي (٥-٩)

تفوقي عطاء لوطني

نصائح ذهبية للتفوق:

- ١) الانتباه
- ٢) احصل علي المعلومات الصحيحة بشكل سليم
 - ٣) أكد لنفسك أنك قادر على التذكر والفهم
 - ٤) طور رغبتك في الموضوع
 - ٥) افهم ما يقال جيدا وبشكل مركز
 - ٦) حاول أن تكون مبدعاً
 - ٧) استخدم طريقة التكرار الفعال
- ٨) حاول أن تنشئ مجموعة من الصور في ذهنك
 - ٩) تعلّم أسلوب الربط
- ١٠) تدرب على التذكر في كافه والأوقات الأحوال
 - ١١) قلل التشويش
 - ١٢) دراسة الكليات وليس الجزئيات

عزيزتي ولية الامر:

شاركينا في تحقيق موسم دراسي مليء بالتفوق والانضباط لأبنائنا الطلاب والطالبات

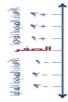
اعداد: أ. فاطمة باعمر

١

ملخص الوحدة الثانية للصف السابع

- الأعداد الصحيحة يرمز لها بالرمز (ص) وتحتوي على الأعداد الموجبة (+) والأعداد السالبة () والصفر
- ص = { + ه، + ٤، + ٣، + ٢، + ١، ، ، -١، -٢، -٣، -٤، -ه، } إذا كان العدد بدون إشارة فان العدد موجب
 - ط= { ۱، ۲، ۲، ۳، ٤،.... } (الأعداد الطبيعية: الأعداد الموجبة والصفر)
 - ط \subseteq ص (الأعداد الطبيعية مجموعة جزئية من الأعداد الصحيحة لأن جميع الأعداد الطبيعية تنتمي للأعداد الصحيحة)
- ص \pm ط (الأعداد الصحيحة مجموعة غير جزئية من الأعداد الطبيعية لأن الأعداد الصحيحة تحتوي على الأعداد السالبة و الأعداد السالبة لا تنتمي للأعداد الطبيعية)
 - الكلمات التي نستخدم فيها الإشارة (+): * فوق. *ملئ. *كثير. *كسب. *ربح *كبير. *أمام. *سريع.. *يمين. *معود. *شمال. *شرق. * ارتفاع
 - الكلمات التي نستخدم فيها الإشارة (-):
 - * تحت. * فارغ. * قليل. *خاب. * خس . *صغير. *خلف. *بطيء.. يسار. *نزول. *جنوب.. *غرب. *انخفاض..

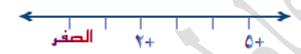
مثال:


اكتب كلا مما يلي في صورة أعداد صحيحة:

- أ) طول أحمد ١٥٠ سم (+ ١٥٠) (الأطوال والمسافات تكون موجبة)
- ب) درجة الحرارة في لندن في فصل الشتاء ١٥ درجة تحت الصفر (١٥) (الإشارة سالبه لأنها تحت الصفر)
 - ج) خسرت شركة مبلغ ٤٥٤٦٠ ريالاً عمانياً (٤٥٤٦٠) (الإشارة سالبه لأنها حسرت)
 - مقارنة الأعداد الصحيحة:

كلما اتجهنا في خط الأعداد إلى اليمين كلما زادت قيمة العدد وكلما اتجهنا إلى اليسار قلت قيمة العدد نستخدم خط الأعداد في مقارنة الأعداد الصحيحة للتعرف على الأكبر والأصغر.

垣 جميع الأعداد الصحيحة السالبة تقعُ على اليسارِ أو للأسفل من الصفرِ.



- ١) الصفر أكبر من أيِّ عددٍ صحيح سالب.
- ٢) والصفر أصغر من أيِّ عددٍ صحيح موجب.
- ٣) أي عدد صحيح موجب أكبر من أي عدد صحيح سالب .
- ٤) وأي عدد صحيح سالب أصغر من أي عدد صحيح موجب.

أولاً: أيهما أكبر + ه أم + ٢

لاحظ أن (+ ٥) تقع على اليمين من + ٢ على خط الأعداد في وضع أفقي .

? + ه أكبر من + ٢

لاحظ أن (+ ٥) تقع فوق (أعلى من) + ٢ على خط الأعداد في وضع رأسي .

مثال:

(- ٣ على اليمين و - ٤ على اليسار لذلك - ٤ هو الأصغر)

(+ ٥ على اليمين و - ١ على اليسار لذلك + ٥ هو الأكبر)

ج) - ٢ < + ٢ (السالب أصغر من الموجب)

مثال:

۸۳ - ۲۲، ۱٤،۷ - ۳۳ -

الترتيب: (الأعداد الموجبة أكبر من السالبة لذلك نبدأ بترتيب الأعداد الموجبة من الأكبر إلى الأصغر ثم الصفر ثم الأعداد السالبة من الأكبر إلى الأصغر)

۲۲، ۱۶، ۲۲، ۲۰، - ۷، - ۳۳، - ۳۸

٨١ ،٤٢- ، ، ، ١٦ ،٩- ،٥٠

الترتيب: (الأعداد السالبة أصغر من الموجبة لذلك نبدأ بترتيب الأعداد السالبة من الأصغر إلى الأكبر ثم الصفر ثم الأعداد الموجبة من الأصغر إلى الأكبر) - ٢١، - ٩، ٠، ١٦، ٥٠، ٨١

اذكر عدداً أكبر من - ٤

الإجابة: -٣، -٢، -١، ٠، ١، ٢، ٠، ١، ٢، ٠. الإجابة أي عدد من هذه الأعداد (نحدد - ٤ على خط الأعداد، الأعداد الذي على اليمين من - ٤ هي الأكبر لان كلما اتجهنا إلى اليمين زادت قيمة العدد)

اذكر عدداً أصغر من أو يساوى ٢

الإجابة: ٢، ١، ٠، -١، -٢، -٣، ... الإجابة أي عدد من هذه الأعداد (نحدد ٢ على خط الأعداد، الأعداد الذي على اليسار من ٢ هي الأصغر لان كلما اتجهنا إلى اليسار قلت قيمة العدد بالإضافة إلى ٢ لأن المطلوب أو يساوي ٢)

اذكر عددا أكبر من ٢٠ وأصغر من ٢

الإجابة: ١، ٠٠، - ١ الإجابة أي عدد من هذه الأعداد (نحدد ٢ و - ٢ على خط الأعداد، ونختار الأعداد الذي بينهما)

. جمع الأعداد الصحيحة:

العنصر المحايد للجمع هو الصفر (معنى العنصر المحايد للجمع أي العدد الذي نجمعه مع عدد آخر ويكون الناتج العدد نفسه)

مثال:

 $7 + \cdot = 7$

~ - = ~ - + ·

النظير الجمعي للعدد أهو - أ (النظير الجمعي للعدد هو العدد نفسه لكن إشارة مختلفة)

مثال:

النظير الجمعي للعدد ٩ هو - ٩

النظير الجمعي للعدد - ١ هو ١

العدد + نظيرة الجمعي = العنصر المحايد الجمعي

أ + - أ = • (عند جمع عددين متشابهين وإشارتهما مختلفة يكون الناتج صفر)

مثال:

· = £ + £ -

اوجد قيمة س بحيث تكون العبارة في كل مما يلي صحيحة:

m+-9=0 س= ۹ (لا يكون الناتج صفر إلا إذا جمع العدد مع نظيره أي جمع عددين متشابهين مختلف الإشارة لذلك س نفس العدد ولكن إشارة مختلف)

$$\Lambda = \omega$$
 $\bullet = \Lambda + \omega$

- جمع أعداد متشابهه الاشارة:

عند جمع عددين متشابهين الإشارة يكون الناتج نفس الإشارة ونجمع العددين أي نضع إشارة الأعداد ثم نفتح قوس ونجمع الأعداد بدون إشارة

مثال:

+ 0 = + (+ 4) = + + 1 (عدد موجب + عدد موجب یکون الناتج موجب الإشارة ونجمع الأعداد بدون إشارة)

- ٤ + - ٠٠ = - (٤ + ٤٠) = - ١٠ (عدد سالب بعون الناتج سالب الإشارة ونجمع الإعداد بدون إشارة)

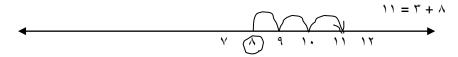
- جمع أعداد مختلفة الإشارة:

عند جمع عددين مختلفي الإشارة يكون الناتج حسب إشارة العدد الأكبر ونطرح العددين أي نضع إشارة العدد الأكبر – العدد الأصغر) العدد الأكبر – العدد الأصغر)

ملاحظة : عند مقارنة الأعداد أيهما أكبر فإننا نقارن الأعداد بدون إشارة

مثال:

7 + - 9 = - (9 - 7) = - 7 (نلاحظ أن 7 أكبر من - 9 ولكن عند جمع الأعداد الصحيحة نقارن الأعداد بدون إشارة 9 و 7 أيهما أكبر ف 9 أكبر من 7 و إشارة 9 سالبة فنضع إشارة سالب ونفتح قوس ونطرح الأعداد مع ترتيب الأكبر - الأصغر)


- ٥ + ١١ = + (١١ - ٥) = + ٦ (نلاحظ أن ١١ أكبر من ٥ وإشارته موجبه فنضع الموجب ونطرح ١١ - ٥)

جمع أعداد مختلفي الإشارة	جمع أعداد متشابهه الإشارة	
حسب إشارة العدد الأكبر	حسب إشارة الأعداد	إشارة الناتج
طرح	جمع	داخل القوس

جمع الأعداد صحيحة باستخدام خط الأعداد: (نحدد العدد الأول ثم نتحرك خطوات بعدد العدد الثاني إذا كان العدد سالب نتجه لليسار ويكون الناتج العدد الذي تم الوصول اليه)

(نحدد العدد الأول ٤ ثم نتجه خطوتين لليسار لان العدد الثاني ٢ و إشارته سالبه فنصل إلى العدد ٢)

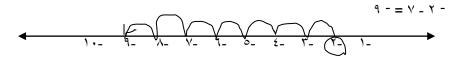
(نحدد العدد الأول ٨ ثم نتجه ٣ خطوات لليمين لان العدد الثاني ٣ و إشارته موجبة فنصل إلى العدد ١١)

- طرح الأعداد الصحيحة:

عند طرح الأعداد الصحيحة العدد الأول لا يتغير والطرح يتحول إلى جمع والعدد الثاني يتغير لنظيره ثم نتبع خطوات جمع الأعداد الصحيحة

 $9-7=9+-7=+(9-7)=+ \lor$ (العدد 9 لا يتغير والطرح يتحول إلى جمع و ٢ يتغير لنظيره - ٢ ثم تتم عمليه جمع الأعداد كما سبق $\cdot \cdot \cdot$ الأعداد مختلفة الإشارة نضع اشاره العدد الأكبر ونطرح الأعداد)

-١٠ – ٥ = -١٠ + - ٥ = - (١٠ + ٥) = -٥٠ (العدد -١٠ لا يتغير والطرح يتحول إلى جمع و ٥ يتغير لنظيره -٥ ثم تتم عمليه جمع الأعداد كما سبق ٠٠ الأعداد متثابهه الإشارة نضع اشاره العددين ونجمع الأعداد)


- ۱۲ - - Λ = - ۱۲ + Λ = - (۱۲ – Λ) = - 3 (العدد - ۱۲ لا يتغير والطرح يتحول إلى جمع و - Λ يتغير لنظيره Λ ثم تتم عمليه جمع الأعداد كما سبق ن الأعداد مختلفة الإشارة نضع اشاره العدد الأكبر ونطرح الأعداد)

-7 - 7 = -7 + -7 = -(7 + 7) = -11 (لابد من التركيز أن العملية عمليه طرح وليس عمليه جمع فلا يكون الناتج صفر بالرغم من تشابهه الأعداد واختلاف الإشارة لذلك العدد -7 ثم يتحول الطرح إلى جمع و 7 يتغير لنظيره -7 ثم تتم عمليه جمع الأعداد كما سبق 7 الأعداد متشابهه الإشارة نضع اشاره العددين ونجمع الأعداد)

طرح الأعداد صحيحة باستخدام خط الأعداد: (نحدد العدد الأول ثم نتحرك خطوات بعدد العدد الثاني إذا كان العدد موجب نتجه لليسار وإذا كان العدد سالب نتجه لليمين ويكون الناتج العدد الذي تم الوصول إليه) (ملاحظة :خطوات الحل عكس عمليه الجمع باستخدام خط الأعداد إذ أن عمليه الجمع الاتجاهات نفس المعتاد عليه اليمين موجب واليسار سالب اما الطرح فيكون العكس اليمين سالب واليسار موجب)

(نحدد العدد الأول ١٠ ثم نتجه خطوه لليمين لان العدد الثاني ١ و إشارته سالبة فنصل إلى العدد ١١)

(نحدد العدد الأول - ٢ ثم نتجه ٧ خطوات لليسار لان العدد الثاني ٧ و إشارته موجبة فنصل إلى العدد -٩)


```
الخاصية الابدالية والتجميعية:
```

- نقصد بالخاصية الإبدالية عند تبديل أماكن الأعداد يكون الناتج نفس الناتج قبل التبديل مثل:

$$17 = 1 + 0$$

٨ + ٥ = ١٣ (نلاحظ عند تبديل أماكن الأعداد حصلنا على نفس الناتج)

: عملية الجمع ابدالية

٥- ٤ = ١ (نلاحظ عند تبديل أماكن الأعداد لم نحصل على نفس الناتج)

ن عملية الطرح ليست ابدالية

نقصد بالخاصية التجميعيه عده أعداد تجمعهم عمليه واحده مثل أ + ب+ ج

(نجمع الثانث ثم الثاني ثم الثاني ثم الثانث 10 = 1 + 1 = 0 + 1) + 10 = 10 + 10

(۷ + ۱۰) + -۲ = ۱۷ + -۲ = + (۱۷ - ۲) = + ۱۰ (نستطیع تبدیل أماکن الأعداد بحیث تکون متشابهه الإشارة مع بعض لان عملیة الجمع ابدالیة)

(نلاحظ إذا أخذنا أي عددين وجمعنا الناتج مع العدد الثالث نحصل على نفس الناتج لذلك عمليه الجمع تجميعية وللطالبة حرية اختيار أي طريقة)

= 0 - 1 - 4

(2 2) 2 2 (2 2) 2

= 1 - 1 = 1 = 1 (طرحنا العدد الثاني من الثالث ثم طرحنا العدد الأول من الناتج)

. عملية الطرح ليست تجميعية لان لم نحصل على نفس الناتج عند اختيار أي عدين وطرحه من الثالث

ضرب الأعداد الصحيحة:

العنصر المحايد للضرب هو ١ (معنى العنصر المحايد للضرب أي العدد الذي نضربه في عدد آخر ويكون الناتج العدد نفسه)

مثال:

 $\circ = \circ \times 1$

٣- = ٣- ×1

النظير الضربي للعدد أ هو $\frac{1}{1}$ (النظير الضربي للعدد هو مقلوب العدد وله نفس الإشارة ونقصد بالمقلوب البسط يصبح مقام والمقام بسط ومقام أي عدد صحيح ١ لذلك المقلوب يكون $\frac{1}{1}$)

النظير الضربي للعدد - ٢ هو -
$$\frac{1}{7}$$

. العدد × نظيرة الضربي = العنصر المحايد للضرب

اً
$$\times \frac{1}{i}$$
 = ۱ عند ضرب عدد بمقلوبه وإشارتهما متشابهه یکون الناتج ۱)

مثال:

$$=\frac{1}{2}\times 0$$

مثال:

أوجد قيمة س بحيث تكون العبارة صحيحة:

$$w \times - V = 1$$
 $w = -\frac{1}{V}$ (V يكون الناتج 1 إ V إذا ضرب العدد بنظيره أي ضرب عدد بمقلوبه متشابهي الإشارة لذلك w نفس إشارة العدد سالبه ولكن مقلوبه)

النظير الضربي	النظير الجمعي	
مقلوب العدد	نفس العدد	العدد
نفس الإشارة	إشارة مختلفة	الإشارة

. عند ضرب عددين متشابهين الإشارة فان الناتج موجب الإشارة حتى لو كانت الأعداد سالبة مثال:

- عند ضرب عددين مختلفي الإشارة فان الناتج يكون سالب بغض النظر عن إشارة العدد الأكبر أي حتى لو كان العدد الأكبر موجب فان الناتج سالب

مثال:

$$\Lambda \times - 3 = -7$$
 (إشارتين مختلفتين يكون الناتج سالب ونضرب الأعداد بدون اشارة)

$$1 \wedge - = 7 \times 9$$

- عملية الضرب ابداليه أي عند تبديل أماكن الأعداد لا يتأثر الناتج

مثال:

YA = £ × Y

- عملية الضرب تجميعية أي عند ضرب عده أعداد واختيار أي عددين وضربهم بالعدد الثالث نحصل على نفس الناتج وللطالبة حرية اختيار أي طريقة

مثال:

= £ × ٣- × ٢

($^{-}$ × $^{-}$) × 2 = $^{-}$ × 2 = $^{-}$ × 2 (ضربنا العدد الأول بالعدد الثاني ثم ضربنا الناتج بالعدد الثالث)

٢ × (-٣ × ٤) = ٢ × - ٢٢ = -٢٤ (ضربنا العدد الثاني بالعدد الثالث ثم ضربنا الناتج بالعدد الأول)

 $(7 \times 3) \times 7^{-} = 7 \times 7 = 7 \times 7$ (نستطيع تبديل أماكن الأعداد بحيث تكون متشابهه الإشارة مع بعض لان عملية الضرب ابدالية)

- مثال:

- ۲ × - ۲ × ۲ × ۲ = ۲ (سالب × سالب = موجب وبالتالي موجب × سالب = سالب وبالتالي

(ملاحظه مهمة: إذا كانت الأعداد المضروبة في بعض جميعها نفس الأشاره وكان عددها فردي فان إشارة الناتج سالبه وإذا كان عددها زوجي فان إشارة الناتج موجبة كما فالمثال السابق - $7 \times - 7 \times - 7$ عدد الأعداد فردي = 7 فان إشارة الناتج سالبة - $7 \times - 7 \times - 7 \times - 7$ عدد الأعداد زوجي = 3 فان إشارة الناتج موجبة)

مثال:

ما إشارة الناتج في العملية التالية:

£-×٣-×11-×1.-×9-×7-×0-

· الأعداد جميعها متشابهه الاشاره وعددها ٧ (أي عدد فردي) فان الناتج سالب الإشارة

للتأكيد: تمم عمليه الضرب بالخاصية التجميعية

 $= \underbrace{\vdots} \times \mathsf{TT} \times \mathsf{P} \times \mathsf{TT} \times \mathsf{P} \times \mathsf{T} = \underbrace{\vdots} \times \mathsf{TT} \times \mathsf{P} \times \mathsf{P} \times \mathsf{TT} \times \mathsf{P} \times \mathsf{$

 $\text{ "olive} - \text{ = 1 mm} - \text{ x ty} + \text{ = (i - x mm)} \times (\text{ q. x m.})$

الخاصية التوزيعية: توزيع العدد خارج القوس على الأعداد داخل القوس مع مراعاة العملية:

أ ($\dot{}$ + $\dot{}$ + $\dot{}$) = $\dot{}$ × $\dot{}$ + $\dot{}$ × $\dot{}$ (عندما يكون عدد بجانب قوس فان هذا يعني أن هناك عملية ضرب أ × ($\dot{}$ + $\dot{}$))

 $m \times m + m \times a = m (m + a)$ (العدد الذي تكرر مرتين هو العدد الذي خارج القوس أي الذي تم توزيعه والأعداد الباقية تكون داخل القوس مع العملية سواء جمع أو طرح)

مثال:

الحل: ٠: العدد ٨ تكرر مرتين : ٨ هو العدد الذي تم توزيعه على العملية

(٤ + ٦) ٨

د) أوجد باستخدام خاصية التوزيع أوجدي ناتج ٣٥ × ١٠٣

الحل: (نأخذ أي عدد ونحلله إلى عددين بينهما جمع أو طرح بشرط يكون مجموع ما داخل القوس = العدد المختار ويفضل اختيار العدد الأكبر)

 $T7.0=1.0+T0..=T\times T0+1..\times T0=(T+1..)\times T0$

(نلاحظ داخل القوس مجموع العددين = ١٠٣ ويفضل اختيار أعداد بها أصفار لتسهيل عمليه الضرب)

ه) أوجد باستخدام خاصية التوزيع ٦ (س + ٣)

الحل: $\Gamma \times m + \Gamma \times T = \Gamma m + 1$ (ملاحظه $\Gamma m = \Gamma \times m$ ولكن $\Gamma T \neq \Gamma \times T$)

. قسمة الأعداد الصحيحة:

عند قسمة عددين متشابهين الإشارة فان الناتج موجب الإشارة حتى لو كانت الأعداد سالبة

مثال:

 $7 = 7 \div 17$

- ٢٠ ÷ - ٥ = ٥ (إشارتين متشابهتين يكون الناتج موجب ونقسم الأعداد بدون اشاره)

- عند قسمة عددين مختلفي الإشارة فان الناتج يكون سالب بغض النظر عن إشارة العدد الأكبر أي حتى لو كان العدد الأكبر موجب فان الناتج سالب

 $\Lambda \div - Y = - 3$ (إشارتين مختلفتين يكون الناتج سالب ونقسم الأعداد بدون اشارة)

0 - = £ ÷ Y .-

- ضرب الأسس
- $1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1$ (یقرأ 1 أس و والأس عدد تكرار العدد (الأساس) ویستخدم إذا كان نفس العدد مضروب في نفسه)
 - ٤ × ٤ × ٤ = ٣٤ . أس ٣ أي ٤ × نفسها ثلاث مرات)
 - عبر عن العدد ٨ بالصيغة الأسية

الحل: نقوم بالتحليل للعوامل الأولية
$$\Lambda$$
 Υ نلاحظ من التحليل Λ = Υ \times Υ \times Υ \times Υ \times Υ \times Υ \times Υ \to Υ

- عند ضرب عددين أو أكثر متشابهات ولهن أس فان يتم إنزال العدد (الأساس) ونجمع الأسس

س × سب = س + ب

مثال:

Υ₁ = ۳+ ^ε₁ = ^π₁ × ^ε₁

إذا كان للعدد أسان فانه يتم ضرب الأسس (سأ)ب =سأ * ب

مثال:

. إذا كان الأس خارج القوس وداخل القوس ضرب أو قسمة فإننا نوزع الأس على اللي داخل القوس أما إذا كان داخل القوس جمع أو طرح فلا يتوزع

مثال:

$$\frac{2}{2} \frac{1}{2} = \frac{2}{2} \left(\frac{2}{5} \right)$$

(٢ + ٣) ٢ + ٢٦ + ٢٣ لا يجوز توزيع الأس على الجمع والطرح

عند قسمة عددين متشابهين ولهن أس فأن يتم إنزال العدد ونطرح الأسس

كوني مع 📠

مثال:

۲٧ = ٤٧ ÷ ٦٧

مثال:

أوجد ناتج : (٣ ب ^٢ ج)^٤

الحل:

 $^{2} \times ^{7} \times ^{5} = ^{2} \times ^{1} \times ^{4} \times ^{5} = ^{1} \times ^{1} + ^{4} \times ^{5}$ (عندما یکون المطلوب الناتج لابد من أیجاد قیمة الأس، نلاحظ توزیع الأس علی القوس و ب لها أسان فیتم ضرب الأسس له ب)

ضع في ابسط صورة

الحل:

(قسمة الكسور نحول القسمة للضرب ونقلب الكسر الثاني)

(ضرب الكسور بسط × بسط و مقام × مقام)

(توجد متشابهات ولهن أسس وبينهم ضرب .: نجمع الأسس في البسط س ا ا × س ا = س ا ا ،

ع × ع = 3 ، ص = 2 × ص = 2 وفي المقام س = 3 × س = 3

 $(^{7}z = ^{7}z \times z ^{7} \cdot ^{3}z \times z ^{7} = z ^{7})$

 $\frac{|Q|}{|Q|} = \frac{|Q|}{|Q|} \times \frac{|Q|}{|Q|} = \frac{|Q|}{|Q|} =$

نطرح الأسس ويفضل تفريق المتشابهات لتسهيل قسمة الأسس س ١٩ ÷ س $= m^1$ ، $= 1^1$ ، $= 1^1$ نطرح الأسس $= 1^1$ $= 1^2$ ، $= 1^2$

(للعلم: العدد الذي لا يوجد له أس فان اسه = ١ مثل ٢ اسه = ١ وليس لا يوجد له أس وأي عدد أسه صفر فانه ناتجه = ١ أي ٤٠ = ١)

إذا كان أ = -7 ، $\psi = 3$ أو جد أ % ÷ ψ

الحل:

(إذا عطى للرموز قيمة فان يتم تعويض الرمز بالقيمة ويصبح بالقيمة المعطاه أي أ يصبح - ٢ و ب تصبح ٤ بدون تغيير أي شيء فالمسألة)

$$(\Lambda^- = \Upsilon^- \times \Upsilon^- \times \Upsilon^- = \Upsilon^{(\Upsilon^-)})$$
 $\Upsilon^- = \xi \div \Lambda^- = \xi \div \Upsilon^{(\Upsilon^-)} = \psi \div \Upsilon^{(\Upsilon^-)}$

مثال: ضع في ابسط صورة: ٢ × ٨

الحل:

(لتبسيط مثل هذه المسائل لابد من توحيد الأعداد حتى نستفيد من قواعد الأسس أي ٨ لابد من وضعها في

الأكبر إلى العدد الأصغر مرفوع باس)

الطاغة لهما

ونلبية أوامرهما

النهاضم لهما ومماملتهما برفق ولين

(عند تساوي الأعداد (الأساس) فان الأسس تكون متساوية ويتم حل الأسس فقط كمعادله حيث يتم إيجاد قيمة ر التي تجعل الأسس متساوية)

(كما أخذنا فالوحدة الأولى للتخلص من العدد بجانب المجهول ينقل للجانب الآخر بعملية مختلفة) ۲ر = ۱۰

$$(1.1 = \frac{\lambda}{1.1} = 0)$$

مثال:

الحل:

(لكي نستطيع إيجاد قيمة ر في الأس لابد من تساوي الأساس (الأعداد) و : بين الأعداد إشارة يساوي فان الأعداد متساوية والأسس متساوية لذلك لابد من تحويل العدد الأكبر الى الأصغر مرفوع بأس أي ٢٧ نحولها إلى ٣ أس عدد

ترتيب العمليات: لابد من اتباع الخطوات التالية بالترتيب عند مصادفة معادله تحتوي على عده عمليات

ج) الضرب والقسمة من اليمين إلى اليسار (أي نبدأ بعملية الضرب والقسمة بهذه الطريقه)

د) الجمع والطرح من اليمين الى اليسار (أي نبدأ بعملية الجمع والطرح بهذه الطريقه على المجمع والطرح من اليمين الى اليسار (أي نبدأ بعملية الجمع والطرح المجاهد الطريقة المحمد المحمد

مثال:

اوجد ناتج
$$7 \times 0 + (3 - 7)^{\frac{1}{2}} - 11 \div 7$$

الحل:

 $7 \times 0 + (7)^{\frac{1}{2}} - 1 \times 0 + 7$ (فك الأقواس أي وجدنا ناتج (3-7) نلاحظ أن في الخطوة الأولى لم نستخدم أي شي في المسألة إلا القوس فقط)

(۲× °) +($(7 \times 7 \times 7 \times 7)$ (يتم تحديد الضرب والقسمة داخل أقواس حتى تسهل لنا خطوه الضرب والقسمة من اليمين إلى اليسار)

۱۰ + ۱۰ – ۷ = (۱۰ + ۱۰)- ۷ = ۲۱ – ۷= ۱۹ (الخطوة الأخيرة الجمع والطرح)

مثال:

الحل:

 7 × (7 - 70) 7 – 7 = 7 × (7 - 7) 7 – 7 (7 - 7) 7 – 7 (7 – 7) 7 – 7 و 7 أولا حتى يتم إجراء عملية الطرح 7 = 7 • 7 • 7 = 7 • 7 = 7 + 7) استخدام أي شي فالمسألة إلا القوس والباقي ينزل كما هو) (تنبيه : 7 – 7 7 + 7)

 $^{"}$ - $^{"}$ - $^{"}$ - $^{"}$ - $^{"}$ (الخطوة الأولى فك القوس أي إيجاد ناتج داخل $^{"}$ - $^{"}$ - $^{"}$

(٣× -٢× -٢ > ٢٠) — ١٢ (يتم تحديد الضرب والقسمة داخل أقواس حتى تسهل لنا خطوه الضرب والقسمة من اليمين الى اليسار)

-٢٤ - ٢١ = -٢٢ + -١٢ = - (١٢+٢٤) = -٣٦ (الخطوة الأخيرة الجمع والطرح)

صوب الخطأ في المسألة التالية:

 $T\circ = \circ \times \vee = \circ \times T + \xi$

الحل:

 $^{\circ} = ^{\circ} \times ^{\circ} = ^{\circ} \times ^{\circ}$ نلاحظ فالمسألة أن بدأ بعملية الجمع ($^{\circ} + ^{\circ}) \times ^{\circ} = ^{\circ} \times ^{\circ}$

لكن الحل الصحيح لابد من إتباع خطوات ترتيب العمليات حيث نبدأ بالضرب والخطوة الأخيرة الجمع

- $19 = 10 + \xi = (0 \times T) + \xi$
 - نظام الوقت
- يوجد الوقت نظامان (نظام ٢٤ ساعة) و (نظام ١٢ ساعة)
- في نظام ٢٤ ساعة يبدأ اليوم من الساعة ١٠:٠٠ وينتهي في الساعة ٢٣:٥٩ لا توجد ساعة ٢٤:٠٠ (الفترة الصباحية تبدأ من الساعة ١٠:٠٠ إلى الساعة ١١:٥٩ والفترة المسائية تبدأ من الساعة ١٢:٠٠ إلى ٢٥:٥٩)
 - نظام ۱۲ ساعة ينقسم الوقت إلى فترتين ۱۲ صباحاً (ص) (تبدأ من ۱۰:۰ ص إلى ۱۱:۰۹ ص) و ۱۲ ساعة مساءاً (م) (تبدأ من ۱۲:۰۰ م إلى ۱۱:۰۹ م)
 - ٣:١٥ ص (١٥ عدد الدقائق و ٣ عدد الساعات لذلك الدقائق جهة اليمين والساعات جهة اليسار)

مثال:

حول الساعات التالية إلى نظام ١٢ ساعة:

- أ) ۳۰:۰۰
- ب) ٥٠:٢١
- ج) ۲۰:۶۱

الحل:

(عند تحويل إلى نظام ١٢ساعة لابد أولاً من تحديد إذا كانت الفترة من الساعة ٠٠٠٠ إلى الساعة ١٢:٥٩ فأنها لا تتحول إلى نظام ١٢٠٠١ بلى ١٢:٠٠ في التحول إلى ١٢:٠٠ ص ومن ١٢:٠٠ إلى ١٢:٠١ م بمعنى آخر أقل من ١٣:٠٠ لا يتغير أما إذا كانت الساعات من ١٣:٠٠ إلى ٢٣:٥٩ فإننا نطرح ١٢ من عدد الساعات)

- i) ٠٥:٣٠ ص (لا يتغير الوقت لان الساعات اقل من ١٣ إنما يكتب ص فقط لأنها في الفترة الصباحية)
 - ب) ١٢:٥٠ م (لا يتغير الوقت لان الساعات اقل من ١٣ إنما يكتب م فقط لأنها في الفترة المسائية)
 - $Y = (1Y 1\xi)$ $1\xi:Y \cdot (\Rightarrow$

أي الساعة ٢:٢٠ م (إذ نطرح ١٢ من عدد الساعات لأنها أكبر من ١٣ ونكتب م لأن لان الساعة ١٣:٠٠ إلى ٢٣:٥٠ تكون في المساء دائماً)

حول الساعات التالية إلى نظام ٢٤ ساعة:

- أ) ۲:۳۳ ص
 - ب) ۱۲:٤٠ م
 - ج) ۱۰: ۰۹ م

الحل:

(عند تحويل إلى نظام ٢٤ساعة لابد أولاً من تحديد إذا كانت الفترة من الساعة ١٠:٠٠ إلى الساعة ١٢:٥٩ فأنها لا تتحول إلى نظام ٢٤ ساعة إنما تكتب نفس الوقت من ١٠:٠٠ إلى ١١:٥٩ ص ومن ١٢:٠١ إلى ١٢:٥٩ م بمعنى آخر أقل من ١٢:٥٩ م لا يتغير أما إذا كانت الساعات من ١١:٠٠ م إلى ١١:٥٩ م فإننا نجمع ١٢ مع عدد الساعات)

- أ) ٦:٣٣ ص (لا يتغير الوقت لان الوقت في الصباح)
- ب) ١٢:٤٠ م (لا يتغير الوقت لان الوقت أقل من ١٠٠٠ م)
 - ج) ۱۰: ۰۹ م

أي الساعة ٢٢:٠٩ (إذ نجمع ١٢ مع عدد الساعات لأنها أكبر من ١ لا يشترط تحديد مساءا لأن الساعات لا تتغير إلى نظام ٢٤ ساعة إلا في المساء)

مثال:

ما الفترة المستغرقة بين الساعات التالية:

- أ) ٤:٣٠ م إلى ١٨:٥٠ م
 - ب) ۲۳:۲۰ إلى ۲:۲۰

الحل:

(الفترة المستغرقة يعني عدد الساعات والدقائق بين الساعتين المعطاة)

أ) لتسهيل عمليه عد الساعات يفضل الابتداء من الساعة ١٠٠٠ (أ = الساعة بعد الساعة الأولى المعطاة)

٠٤:٣٠ م → ٠٠:٠٠ (أقرب ساعة ٠٠:أ للساعة ٣٠:٤ هي ٠٠:٠٠ ثم نحسب عدد الدقائق حتى نصل للساعة ٠٠:٥)

(۲۰ ـ ۳۰) = ۳۰ دقیقة) دقیقة)

٣٠ + ١٨ = ٨٤ دقيقة (نجمع الدقائق من الخطوة السابقة مع دقائق الساعة الثانية لتسهيل عملية العد إذ الدقائق التي نتجت من الوصول للساعة ٠٠٠٠٠ تعتبر أيضا ً جزء من الفترة المستغرقة)

فنجد الوقت من ٤٠٠:٣٠ م إلى ١٥:١٨ م يستغرق ٤٨ دقيقة

```
ب) ٢٣:٢٠ إلى ٢:٤٠ (أي من الساعة ٢٠:١٠ م إلى ٢:٤٠ ص)
   ٢٣:٢٠ 🛶 ٠٠:٠٠ ( أقرب ساعة ١٠: أللساعة ٢٣:٢٠ هي ١٠:٠٠ ثم نحسب عدد الدقائق
                                                               حتى نصل للساعة ٠٠:٠٠)
                                 ( ٦٠ - ٢٠ ) = ٤٠ دقيقة )
٤٠ + ٤٠ = ٨٠ دقيقة (نجمع الدقائق من الخطوة السابقة مع دقائق الساعة الثانية لتسهيل عملية العد
            إذ الدقائق التي نتجت من الوصول للساعة ٠٠:٠٠ تعتبر أيضا جزء من الفترة المستغرقة )
                                        ٨٠ دقيقة = ساعة و ٢٠ دقيقة لأن الساعة فيها ٦٠ دقيقة
  ٨٠ دقيقة لا تكفي للوصول للساعة المطلوبة لذلك نحسب ما تبقى من الوقت من الساعة ٢٠:٠ إلى الساعة
               ٠٠:٠٠ ولا نحسب إلى ٢:٢٠ لان ٢٠ حسبناها قبل مع دقائق الوصول للساعة ٠٠٠٠
                                                    فنجد الوقت من ٠٠٠٠ إلى ٢:٠٠ ساعتان
فتكون الفترة المستغرقة من ٢٠:٤٠ إلى ٢:٤٠ ساعتان بالإضافه إلى ٨٠ دقيقة أي ٣ ساعات و٢٠ دقيقة
                                                                                (٣ ساعات وثلث)
                                                                                          مثال:
إذا علمت أن أحد القطارات يغادر في الساعة ٣٠:٥٠ م وتحتاج الرحلة إلى ٣ ساعات و ٣٥ دقيقة فمتى سيصل القطار؟
                                                                                          الحل:
                 لتسهيل عمليه عد الساعات يفضل الابتداء من الساعة ١٠٠٠ ( أ = الساعة بعد الساعة المعطاة)
  ٠٠:٠٠ إلى ٠٠:٠٠ ( أقرب ساعة ١٠٠٠ للساعة ٢٠٠٠ هي ١٠:٠٠ ثم نحسب عدد الدقائق حتى
                                                                   نصل للساعة ٠٠:٠٠)
                                 ( ۲۰ ـ ۳۹ ) = ۲۱ دقيقة ( ۲۰ لان الساعة فيها ۲۰ دقيقة )
( نطرح الدقائق من الخطوة السابقة من دقائق فترة الرحلة لأن للوصول للساعة
                                                                  ٣٥ - ٢١ = ١٤ دقبقة
    ٠٠:١٠ يكون من ضمن فترة رحلة القطار لذلك يتم خصمها من الفترة المعطاة ثم نحسب من الساعة
                                                                    ٠٠:٠٠ ثلاث ساعات)
```

والله ولى التوفيق

ولكن نلاحظ من الدقائق ١٤ دقيقة متبقية فيكون وقت الوصول ١٤٠٩٠ م

٠٠:٠٠ ← ٠٦:٠٠ (ثلاث ساعات)