joacademy.com - ریاضیات

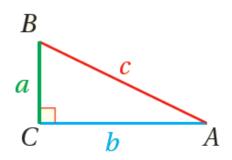
تبسيطُ-المقاديرِ-الأُسِّيَّةِ-joacademy.com/e-school/lesson/4151

النسب المُثلَّثيةُ

Trigonometric Ratios

فكرةُ الدرس : تعرُّفُ جيب الزاويةِ، وجيب تمامِها، وظلِّها، بوصفِها نسبًا بينَ أضلاع مُثلَّثٍ قائم الزاويةِ

أولًا: النسبُ المُثلَّثيةُ


هي نسبةٌ بينَ طوليْ ضلعينِ منْ أضلاعِ المُثلَّثِ قائم الزاويةِ : (trigonometric ratio) النسبةُ المُثلَّثيةُ

(نظريةٌ (النسبُ المُثلَّثيةُ

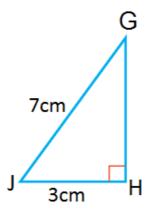
زاويةً حادَّةً فيهِ، فإنَّ نسبَ المُثلَّثِ Δ قائمَ الزاويةِ، وكانَتِ ΔABC إذا كانَ : التي هيَ أكثرُ شيوعًا تُعرَفُ بدلالةِ الوترِ، والضلعِ المُقابِلِ، والضلعِ المُجاوِرِ كما يأتي

(sine) الجيبُ

•
$$\sin A = \frac{(المُقابِلُ)}{(الوترِ)} = \frac{a}{c}$$

(cosine) جيبُ التمام

•
$$\cos A = \frac{(المُجاوِرُ)}{(الوترِ)} = \frac{b}{c}$$


(tangent) الظلُّ

• tan
$$A = \frac{(أَلمُقَابِلُ)}{(المُجاوِرِ)} = \frac{a}{b}$$

إلى الأطوالِ المُقابِلَةِ لِنَاكَ (a, b, c) إلى رؤوسِ المُثلَّثِ، في حينِ تشيرُ الأحرفُ الصغيرةُ (A, B, C) رموز رياضيةٌ: تشيرُ الأحرفُ الكبيرةُ • الرؤوسِ . الرؤوسِ . الرؤوسِ . الرؤوسِ . وهكذا ، a بالحرف A فمثلًا ، يشارُ إلى طولِ الضلع المُقابِلِ للزاويةِ

: مثال 1

في المُثلَّثِ المُجاورِ G أجدُ قِيمَ النسب المُثلَّثيةِ الثلاثِ للزاويةِ

: الحل

GH الخطوة 1: أستعملُ نظريةَ فيثاغورس لإيجادِ

نظرية فيثاغورس	(JG)2=(HG)2+(JH)2
JG=7,JH=3 بتعویض	(7)2=(HG)2+(3)2
بالتبسيطِ	49=(HG)2+9
بطرح 9 من طرفي المعادلة	(HG)2=40
بأخذ الحذر التربيعة اطرف المعادلة	HG=+40

HG=±40 باخذِ الجذرِ التربيعيِّ لطرفي المعادلةِ

HG=40 بما أنَّ الطولَ لا يُمكِنُ أنْ يكونَ سالبًا، فإنَّ

الخطوة 2: أجدُ النسبَ المُتلَّثيةَ الثلاثَ

tanG=JHHG=340 cosG=HGJG=407 sinG=JHJG=37

ثانيًا: النسبُ المُثلَّثيةُ، والآلةُ الحاسبةُ

يُمكِنُ إيجادُ قِيم النسبِ المُتأَثيةِ لزوايا معلومةٍ باستعمالِ الآلةِ الحاسبةِ

قبلَ استعمالِها (DEGREES) أتعلَّمُ : أضبطُ الآلةَ الحاسبةَ على خيارِ ••

: مثال 2

: أجدُ قيمةَ كلِّ ممّا يأتي باستعمالِ الآلةِ الحاسبةِ، مُقرِّبًا إجابتي إلى أقرب ثلاثِ منازلَ عشريةٍ

1)sin40°2)cos68°3)tan37°

:الحل

1)sin40°

: ثُمَّ أُدخِلُ القيمةَ 40 ، ثمّ اضغط على مفتاح = ، فتظهر النتيجة ، sin اضغط على مفتاح

sin40°=0.642787609687

بالتقريب إلى ثلاثِ منازلَ عشريةٍ، فإنَّ النتيجةَ هي : 0.643

sin40°≈0.643 إذن

2)cos68°

: ثُمَّ أُدخِلُ القيمةَ 68 ، ثمّ اضغط على مفتاح = ، فتظهر النتيجة ، cosine اضغط على مفتاح

cos68°=0.374606593416

بالتقريب إلى ثلاثِ منازلَ عشريةٍ، فإنَّ النتيجةَ هي : 0.375

cos68°≈0.375 إذن

3)tan37°

: ثُمَّ أُدخِلُ القيمةَ 37 ، ثمّ اضغط على مفتاح = ، فتظهر النتيجة ، tan اضغط على مفتاح

tan37°=0.753554050103

بالتقريب إلى ثلاثِ منازلَ عشريةٍ، فإنَّ النتيجةَ هي : 0.754

tan37°≈0.754 إذن

يُمكِنُ استعمالُ الآلةِ الحاسبةِ لإيجادِ أيِّ زاويةٍ حادَّةٍ في المُثلَّثِ قائم الزاويةِ إذا عُلِمَتْ إحدى نسبِها، وذلكَ باستعمالِ ••

(inverse trigonometric ratio). معكوس النسبةِ المُثلَّثيةِ

وإذا عُلِمَ ،(cos-1) وإذا عُلِمَ جيبُ تمامِ الزاويةِ، فإنّني أستعملُ معكوسَ جيبِ التمامِ ، (sin-1) فإذا عُلِمَ جيبُ الزاويةِ، فإنّني أستعملُ معكوسَ الخللّ (tan-1).

: لغةُ الرياضياتِ

.(sin-1) ويُرمَزُ إليهِ بالرمزِ ، sine inverse : يُقرَأُ معكوسُ الجيبِ

. (cos-1) ويُرمَزُ إليهِ بالرمز ، cosine inverse : يُقرَأُ معكوسُ جيب التمام

.(tan-1) ويُرمَزُ إليْهِ بالرمزِ ، tan inverse : يُقرَأُ معكوسُ الظلِّ

: مثال 3

: الحادَّةِ في كلِّ ممّا يأتي، مُقرِّبًا إجابتي إلى أقربِ منزلةٍ عشريةٍ واحدةٍ A أجدُ قياسَ

1)sinA=0.62)cosA=383)tanA=149

: الحل

1)sinA=0.6

sinA=0.6 النسبةُ المعطاةُ

m∠A=sin-1(0.6) معكوسُ الجيب

: كما يأتي (sin-1(0.6 والآنَ أستعملُ الآلةَ الحاسبةَ لإيجادِ

: ثمّ أُدخِلُ القيمةَ 0.6 ، ثمّ اضغط على مفتاح = ، فتظهر النتيجة sin ثمَّ مفتاح ، SHIFT اضغط على مفتاح

SHIFTsin(0.6)=36.869897645844

°بالتقريب إلى أقرب منزلةٍ عشريةٍ واحدةٍ، فإنَّ النتيجةَ هيَ:36.9

£ذنْ : ∠A≈36.9 الذنْ

2)cosA=38

m∠A=cos-1(38) معكوسُ جيبِ التمام

: ثمّ أُدخِلُ القيمةَ 38 ، ثمّ اضغط على مفتاح = ، فتظهر النتيجة cos ثمَّ مفتاح ، SHIFT اضغط على مفتاح

SHIFTcos(3÷8)=67.9756871629578

°بالتقريب إلى أقرب منزلةٍ عشريةٍ واحدةٍ، فإنَّ النتيجةَ هي : 68

A≈68° إذنْ

3)tanA=149

m∠A=tan-1(149) معكوسُ الظلّ

: ثمّ أُدخِلُ القيمةَ 149 ، ثمّ اضغط على مفتاح = ، فتظهر النتيجة tan ثمَّ مفتاح ، SHIFT اضغط على مفتاح

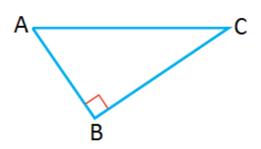
SHIFTtan(14÷9)=57.2647737278924

°بالتقريب إلى أقرب منزلةٍ عشريةٍ واحدةٍ، فإنَّ النتيجةَ هي : 57.3

£ : ∠A≈57.3 إذن

ثَالثًا: العلاقةُ بينَ الجيبِ وجيبِ التمام

(نظريةً (مُتطابقةً فيتاغورس


: زاويةٌ حادَّةٌ في المُثلَّثِ، فإنَّ A في أيِّ مُثلَّثٍ قائم الزاويةِ، حيثُ

sin2A+cos2A=1

: مثال 4

sinC=0.8 في المُثلَّثِ المُجاوِرِ، إذا كانَ

cosC فأجد

: الحل

مُتطابِقةُ فيثاغورس	sin2C+cos2C=1
sinC=0.8 بتعويضِ	(0.8)2+cos2C=1
بالتربيع	0.64+cos2C=1
بطرحِ 0.64 من طرفي المعادلة	cos2C=0.36
بأخذِ الجذرِ التربيعيِّ للطرفينِ	cosC=±0.6

هوَ ناتَجُ قسمةِ طولِ الضلعِ المُجاوِرِ على الوترِ، وبما أنَّ الأطوالَ لا يُمكِنُ أنْ تكونَ سالبةً، ABC في المُثلَّثِ قائمِ الزاويةِ C بما أنَّ جيبَ التمامِ للزاويةِ في المُثلَّثِ قائمِ الزاويةِ المُعالِمِ ال

cosC=0.6 قيمةٌ موجبةٌ ؛ أيْ cosC=0.6

. أتعلَّمُ: قيمةُ كلِّ منَ الجيب، وجيب التمام، والظلِّ موجبةٌ لأيِّ زاويةٍ حادَّةٍ • •

رابعًا: الجيبُ وجيبُ التمام للزوايا المُتتامَّةِ

(مفهومٌ أساسيٌّ (الجيبُ وجيبُ التمام للزوايا المُتتامَّةِ

ز اويتينِ مُنتامَّتينِ في مُثلَّثٍ قائم الزاويةِ، فإنَّ B و A إذا كانَ

sinA=cos(90°-A)=cosBsinB=cos(90°-B)=cosAcosA=sin(90°-A)=sinBcosB=sin(90°-B)=sinA

: مثال 5

. °cos51 فأجد ، sin39°=0.6293 إذا كانَ

: الحل

sinA=cos(90°-A) تعريفُ الجيبِ وجيبِ التمام للزوايا المُتتامَّةِ

A=39 بتعويضِ	sin39=cos(90°-39)
بالتبسيطِ	sin39°=cos(51°)
sin39°=0.6293 بتعويض	cos(51°)=0.6293